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Acronyms

IK Inverse Kinematics

dof Degrees of Freedom
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GUI Graphical User Interface
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Abstract

The goal of this project is the design and creation of a quadrupedal robotic plat-
form and implementation of robotic control algorithms for legged motion plan-
ning using ROS.

This project investigates the capability of a designed quadrupedal robot to tra-
verse uneven terrain using control software designed with python and ROS. In
a world where over half the earth is inaccessible to wheel robots, the need for
legged robots is needed for full automation.

The system allows for basic traversal of terrain by modifying a simple gait al-
gorithm in real-time using an IMU sensor data. This report covers mechanical
and electrical design of the robot, as well as the overall software design. The
capabilities of the robot are tested and recorded in both flat and uneven terrain
by comparing walk speeds and optimal tuning was recommended.

Overall the robot performed adequately but not as well as expected. It is recom-
mended that the control system be improved by adding sensors to the feet of the
robot to measure reactionary force on the foot and using more Klamen filtering
for the IMU data to stop drift. Further investigation is recommended.
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1 Introduction

Over 50 percent of the earth’s landmass is inaccessible to wheeled vehicles. This
is not the case for a legged creature that can freely traverse most of this geo-
graphy. This creates a need for legged robot development, with the goal of recre-
ating animals natural ability to traverse uneven terrain[1].

Walking robots have many advantages over traditional wheeled robots but their
use in industry and services is still limited [2]. Therefore, they are more suitable
to perform tasks in environments that are sensitive to intrusion. A walking ro-
bot can benefit from that active suspension as part of its structure and allows
the robot to adapt to the terrain. This allows for a smoother ride for any pas-
sengers or cargo, or an active omnidirectional but stable base while tasks are
being performed with a manipulator. This gives them an advantage in traversing
through tight environments. This does depend on its design and control system
[3].

The main objective of this project was to test motion planning algorithms with
a custom quadrupedal robot. The objectives include the design of a mobile quad-
rupedal robot with 3 dof Limbs.The specifications inculde battery power, wire-
lees conectivity, linux compatible SBC, 3dof limbs and IMU feedback. Autodesk
fusion360 was used as the mechanical design sofware and 3d printed ABS and
lazer cut Ply was used for the manufacturing.

The control system performs a simplified mammalian trot gait by applying out
of phase oscillation patterns to the foot positions of the robot. By using the geo-
metry of the leg and an IK solver, necessary joint rotations can be obtain in
real-time. To allow the robot to traverse uneven terrain IMU data was used as
feedback, with the goal og the system of keeping the body of the robot as level
as posible to increase stablility. The control sytstem used ROS’ node structure
and be implemented using Python. The software comunicates with the robot
through wireless conection and inclued a GUI that allows the user to change gait
parameters and IMU gains from a remote PC.

The robot and algorythm was tested by timing the robots traversal across 3
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types of terrain: Flat, Sloped and with shallow obstiles. The system was tuned
by modifying parametres of the gait control system and IMU feedback gain to
maximies traversal speed and stability.
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2 Aim

The aim of this project was test legged motion control algorithms on a custom
designed quadrupedal robot.The robot spesicfications was; 3 dof limbs, IMU,
battery powered, wifi enabled SBC. The robot was to be designed in CAD and
fabricated using 3D printing and laser cutting techniques. The control system
modifies a predefined gait to allow the robot to traverse uneven terrain. The
system operates with a ROS master-slave architecture using rViz Visualization
software and custom software controller on a remote pc to operate the robot.
The robot will be tested on 3 types of terrain, flat, sloped and flat with shallow
obstacles. The system will be tuned by modifying the PID gains of the feedback
IMU data.
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3 Objectives

Design and construction of a quadrupedal robot, with the following specification:

• The robot will be designed using fusion 360 CAD sofware.

• The robot will consist of 4 limbs each with 3 d.o.f. Each limb consists of 3
servos arranged in identically.

• Onboard SBC compatable with linux and ROX with the capability of UART
and I2c, battery operation, WiFi-enabled.

• Onboard IMU connected to the SBC via I2C and Powered by a 5 V sup-
ply.

• Onboard Servo Controler connected to the SBC via UART and powered by
both 7.2 V and 5 V.

• Battery Power and both 5 V and 7.2 V output.

Design and Implementation of GUI using Rviz.

• Configuration of ROS master-slave network. A PC ,with ROS and linux
installed, acts as the slave maching and the SBC onboard the robot is the
master.

• Configure R-viz simulation of the robot. Done by creation of a URDF file
describing the robot geometry and joint motion. This is loaded into R-viz
simulation tool. The simulation should broadcast joint positions for the
robot to implement.

Configure the robot for use with ROS.

• Creation of a ROS node that implements motions simulated motions from
Rviz. This is Run on the robots SBC.

• Creation of a ROS node that sends positional data from the IMU to the
motion planning control system. Aso run on the SBC.

Implementation of the motion control system:
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• Implementation of an algorithm that calculates joint angles from foot posi-
tion (IK). This is implemented using ROS node structure.

• Implementation of a ROS node That takes user data from the GUI and
IMU data from the robot and generates and runs a gait motion in Rviz.
The GUI should consists of a visualisation of the robot and gait motion.
The user is also able to change gait parameteres and IMU PID gains in
realtime.

Testing of the system:

• Create of a short course for the robot, simulating 3 types of terrain. Flat,
Sloped and with shallow obsticles.

• Tune and record robot speed against different gait parameters and IMU
PID gains.
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4 Deliverables

Design and fabrication of quadrupedal robot with IMU sensor input and to the
specifications defined in the objectives.

Design and implementation of a motion control system softwareusing ros and
python that uses IK and IMU sensor data as feedback to generate motions for
the robot.

Design and Implmetaion of a GUI software in python using Rviz allowing for
user to view and configure the generated gate.

Testing the robot across different terrains and recoding results.

Production of the report of results and understading.

10



Quadrupedal Robotic Platform For Research on Legged Motion Planning

5 The Technical Background and Context

5.1 Overview

Quadrupedal robotic designs have many criteria to be considered such as Big-
Dog [1], a robotic platform designed addresses the practical problems of on-
board power and rough-terrain controls in order to move toward practical legged
vehicles. Although robot complexity is high, The concept of robot stability and
controls through rough-terrain are universal to all walking robots

5.2 Gaits and balance and control

The gaits of biological Quadrupeds divided into symmetrical and asymmetrical
sequences. with the key variables being the duty factor and forelimb-hindlimb
phase[4]. And the functions capable of being mathematically modelled as a net-
work of coupled non-linear oscillators[5].

The Best foothold selected should satisfy the following rules as much as possible;
foot slip should be avoided or minimized; Walking speed should be maximized.
For two candidate footholds, one lies at the front of the default foothold, and
the other lies at the back; the priority of the front foothold should be larger than
that of the back one. Also, the distance between the candidate foothold and de-
fault foothold should be minimized, according to the law of quadruped bionic
movement [5].

The control of the robot can be divided into a gait central pattern generator and
a control system with feedback linearization. The gait generator is developed
based on optimal inverse kinematics with the use of Trigonometric functions[6].

The objective of this project is to create a control system that can traverse across
rough terrain. A control system that uses a posture correction controller with
data from an IMU is required to modify the foot trajectory [7]. JQuadRobot
[8], has an appropriate design with 3 d.o.f. freedom limbs, but the lack of sensor
input results in an open-loop control system that allows traversal across flat ter-
rain.
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Legged robotic control systems and can be divided into 3 primary activities[1]:

• Supporting the body with a vertical bouncing motion.

• Controlling the altitude of the body by modifying hio torques during each
legs stance phase.

• Placing Feet in key locations each step, using symmetry principals.

5.3 Robotic Control Software

The system uses ROS, a flexible framework for writing robot software. It’s pur-
pose is to simplify the task of creating complex and robust robot behaviour
across a wide variety of robotic platforms. It contains a wide range of libraries
that assists with robotic motion and motion planning. Its node structure allows
for fast prototyping across multiple machines. The ROS nodes can be imple-
mentded with both C++ and Python and are self contained. This allows for
exchnaging and testing of elements of the system withough recoding the entire
system.
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6 Technical Approach

6.1 Mechanical Design

The basic configuration of a quadrupedal robot is a rectangular base uppored by
4 legs in each corner.

Figure 1: Quadruped Reprisentation

There are many leg configurations for quadrupeds. This particular configuration
was chosen to emulate mammal gaits with limited d.o.f per limb. Each leg con-
sists of 3 actuators. Two hip actuators which rotate around the X and Y axis
and a Knee joint that rotates around the Y axis.

Figure 2: £ degrees of motions Leg

To increase stability limb length was keeped to a minimum. The increased range
of motion distance between the hip to knee and knee to foot are keeped same.
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Many leg designs were tested. The figure shows the final design. Lower leg parts
and leg mount’s were 3D printed from ABS plastic.

Figure 3: Final leg design

A base was made to adequately hold electronics including a battery. This was
Laser printed from 4mm ply. Many leg designs were prototyped. Early design

Figure 4: Final robot design

lacked freedom of movement and ability to sit flat without active actuation.
Limb length and body size was also a factor, with a shorter limb and wider body
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being preferable. This has the advantage of greater stability and energy effi-
ciency but has the disadvantage of decreasing mobility. A fully 3D printed leg
was also tested, this was unable to perform under the chaotic moments of the
legged motion.

Figure 5: Leg design iterations
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6.2 Electronic Design

The basic electrical specification for the robot is the capability to drive power
and control 12 servo motors. A single board computer to operate ROS. An IMU
with 9 d.o.f for sensory input and a Battery power system. The basic topology
of the system is shown in the following figure.

Figure 6: Flow diagram of electronics

The system will consist of 2 voltages 7.2 V for the servo and 5 V for the single
board computer. This will be supplied with a 2 S Lithium polymer battery with
an average voltage of 7.4V. A voltage regulator is used to step down the voltage
to 5 V. There are 2 external switches connected to the system. The Momentary
switch initiates safe shutdown and disables servo motors and the toggle switch
disconnects the battery from the system.

The single board computer uses is a Raspberry Pi 3B+ with Lubuntu installed.

The IMU (ICM20948 9DoF Motion sensor) is connected to the 5v supply and
communicates with the Raspberry Pi with I2C connection. The Servo controller
board (Mini Maestro 12-Channel) is connected to the Raspberry Pi via UART
and requires both 7.4 V and 5 V. The servos are controllers with a PWM signal
with a max voltage of 5V generated by the servo controller. The Implemented
electronics is shown in the figure.
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Figure 7: Robot electronics

The issue that was come across in the electrically design was that the servo con-
troller could not supply enough current to the servos and had to be replaced
with a controller with a higher power rating.
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6.3 Software design

The base specification of the software is to link to the robot via wifi and control
its actuators depending on a generated gait sequence and data from the IMU
on the robot. The software was designed using python and ROS’ node struc-
ture. Node communicated across a LAN using channels with unique identifiers
called topics. Topics are configured to receive data in a certain format. The ba-
sic topology is shown in the figure. The system is designed so that the end user

Figure 8: Flow diagram ROS nodes

can simulate motions before applying them with the robot. This can be done
by disabling the servo node. The servo node’s purpose is to apply joint rotation
data to the servos through the servo controller. It Receives joint state data on
the joint topic generated by Rviz which is an array of joint rotations in radi-
ans. This data is converted into a PWM signal and sent to the servo control-
ler via UART. IMU node Receives rotational data from the IMU via I2C con-
nection and publishes the data on the IMU topic. The data received from the
IMU is very noisy as such the data is passed through a low pass filter to stabil-
ise the information. Over damping of the data results in a slower response to
rotational changes. This is a subject to be further explored. The IK node re-
ceives the planned position of the end of the legs and converts this into joint ro-
tations to be published on the joint topic. It uses the Ik topic to receive data in
the format of an array of 4 points, with each point consisting of 3 32bit floats
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representing x,y,z. It Sends data on the joint topic in the format of an array of
12 64 bit floats representing the angle of each joint in radians. It uses the ikpy
library to calculate the inverse kinematics using the geometry and limits of a leg.
Due to the Heavy overhead of the IK calculation the number of iteration of cal-
culations are limited to 10. Reducing iterations increases accuracy of the calcu-
lation but increases the speed and therefore the response of the robot to external
forces. This is to be further explored. Rviz is a visualization software supplied
with ROS. It was configured to display robot motion. A URDF file was created
to allow Rviz to display a 3D model of the robot. Rviz then listens for messages
on the joints topic and translates limbs accordingly.The message format is an
array of 12 64 bit floats. The Gait control node is the main controller for the ro-

Figure 9: Rviz Robot Simulation
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bot. It receives rotational data from the IMU topic user input from a GUI and
generates a stream of foot positions using sinusoidal motion. The user paramet-
ers are speed of walk; X and Z offset, which control how far forward and high
the leg extends during a step. Start offset sets how high the body of the robot
remains off the ground. The P, I and D IMU offset adds or reduces the PID gain
of the IMU data.

Figure 10: GUI

The gait template is of a simple mammalian walk in a forward direction. Each
diagonal limb acting in unison and each adjacent leg having an identical se-
quence 180 degree out of phase. Each leg sequence consists of 2 phases. The foot
moves forward in an ark motion, lifting the foot vertically. Then dragging the
foot across the ground backwards.
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(a) X axis motion

(b) Y axis motion

Figure 11: Y and X motion of feet

7 Results And Disscusion

The algorithm was tested on multiple surfaces. The first is a flat hard surface.
A surface literied with short obstacles secured to the ground. And the last is
terrain with ramps.

First the robot was tested on flat terrain with IMU PID gains set to 0. The
parameters were then adjusted to create as stable a walk as possible before adding
input from the IMU input. The speed of the robot was calculated by timing
with the robot across a 50cm distance. The highest speed traversal was con-
sidered the most stable tuning.

Without IMU input the walk is very unstable. With this gait there is a point
where the robot has to balance on 2 legs. Without input the robot struggles due
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(a) Flat

(b) Sloped

(c) Obstacles

Figure 12: Types of terrain

to its center of gravity being off center. This can be compensated against by re-
ducing set size and increasing the speed of the steps. But too much speed can
also cause instability.
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Table 1: Optimal Flat terrain tuning with no IMU gain

Step Speed(sec) 0.73
Vertial Leg travel(mm) 15
Horizontal Leg travel(mm) 16
Vertial Body offset(mm) 1.43

The speed of the robot was then tested on flat terrain modifying IMU PID in-
put.

Table 2: Optimal Flat terrain tuning with IMU gain

IMU P gain 0.1
IMU I gain 0
IMU D gain 0.1
Liniar Speed(mm/s) 41.7

The speed of the robot was then tested on flat terrain littered with set obstacles
modifying IMU PID input.

Table 3: Optimal Obstacles terrain tuning with IMU gain

IMU P gain 0.3
IMU I gain 0
IMU D gain 0.1
Liniar Speed(mm/s) 4.4

The speed of the robot was then tested on sloped terrain modifying IMU PID
input.

Table 4: Optimal sloped terrain tuning with IMU gain

IMU P gain 0.2
IMU I gain 0
IMU D gain 0.3
Liniar Speed(mm/s) 34.5
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8 Conclusions and Recommendations for Fur-

ther Work

The robot is adequate and can complete the task of traversal over uneven terrain
but performed worse than expected with a very slow maximum walk speed and
is very sensitive to change in values. It is than adequate for a complete system
due to limitations in both the software and the hardware.

Computing power is a limitation due to the strain of calculating the Ik of the
limbs so many times a second with faster hardware the accuracy and speed of
the IK calculation could be improved. It could also be improved by rewriting
the IK algorithm in C++ for faster computation. The result would be higher
resolution motions and more accurate leg positioning.

Another issue is the response of the servos is slow. Due to this it is difficult for
the robot to respond to sudden changes in the environment. It’s recommen-
ded to use a higher power actuator with a lower gearing. Brushless motors with
either planetary or harmonic gearbox is recommended.

The IMU data tends to drift giving inaccurate data over time. It is recommen-
ded to improve its accuracy by implementing a kalman filter which estimates the
position of a system.

For an Improved system the amount of sensory data the robot receives should
be increased. Pressure sensors on the feet should measure the reactionary forces
between the robot and the ground plain. This would allow for greater stability
[1].

Leg design could be improved. The final design chosen does not have complete
range of motion and as a result the legs require a certain level of extention for
the robot to walk. In general for further explorations it is recommended to in-
vestigate this subject further with higher power actuators with joint position
and current feedback. Also test modification of the filtering of IMU data.
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10 Appendix

10.1 Robot Final Design
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10.2 Previous Robot Design
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10.3 Leg Design
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10.4 Previous Leg Designs
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10.5 URDF file
1 <?xml version="1.0" encoding="UTF -8"?>

2 <robot name="ROSberryPup"><!--Robot name -->

3 <!--Geometry , Position and Joint Parameters -->

4 <!--Base Link -->

5 <link name="base_link">

6 <visual >

7 <geometry >

8 <box size="2.8 2.2 0.43"/><!--Geometry shape and size. -->

9 </geometry >

10 <origin rpy="0 0 0" xyz="0 0 0"/><!--Offset from origin.-->

11 </visual >

12 </link>

13

14 <!--Right Front Leg -->

15 <link name="rf_hip">

16 <visual >

17 <geometry >

18 <cylinder length="0.32" radius="0.15"/>

19 </geometry >

20 <origin rpy="0 0 0" xyz="0 0 -0.21"/>

21 </visual >

22 </link>

23 <joint name="base_to_rf_hip" type="revolute"><!--Joint name an

type.-->

24 <parent link="base_link"/><!--Joint parent conection.-->

25 <child link="rf_hip"/><!--Joint child connection.-->

26 <axis xyz="1 0 0" /><!--Joint rotational axis.-->

27 <origin rpy=" -1.5707 0 0" xyz=" -0.83 1.18 -0.455"/><!--Joint

posiotn.-->

28 <limit effort="50" velocity="10" lower="0" upper="2.141" /><!

--Joint limits and speed.-->

29 </joint >

30

31 <link name="rf_thigh">

32 <visual >

33 <geometry >

34 <cylinder length="0.64" radius="0.15"/>

35 </geometry >
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36 <origin rpy="0 0 0" xyz="0 0 -0.37"/>

37 </visual >

38 </link>

39 <joint name="rf_hip_to_thigh" type="revolute">

40 <parent link="rf_hip"/>

41 <child link="rf_thigh"/>

42 <axis xyz="0 1 0" />

43 <origin rpy="0 -1.5707 0" xyz="0 0 -0.42"/>

44 <limit effort="50" velocity="10" lower="0" upper="3.141" />

45 </joint >

46

47 <link name="rf_shin">

48 <visual >

49 <geometry >

50 <cylinder length="0.64" radius="0.15"/>

51 </geometry >

52 <origin rpy="0 0 0" xyz="0 0 -0.37"/>

53 </visual >

54 </link>

55 <joint name="rf_thigh_to_shin" type="revolute">

56 <parent link="rf_thigh"/>

57 <child link="rf_shin"/>

58 <axis xyz="0 1 0" />

59 <origin rpy="0 0 0" xyz="0 0 -0.74"/>

60 <limit effort="50" velocity="10" lower="0" upper="3.141" />

61 </joint >

62

63 <link name="rf_foot">

64 <visual >

65 <geometry >

66 <sphere radius="0.15"/>

67 </geometry >

68 <origin rpy="0 0 0" xyz="0 0 0"/>

69 </visual >

70 </link>

71 <joint name="rf_shin_to_foot" type="fixed">

72 <parent link="rf_shin"/>

73 <child link="rf_foot"/>

74 <axis xyz="0 1 0" />
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75 <origin rpy="0 0 0" xyz="0 0 -0.74"/>

76 </joint >

77

78 <!--Right Back Leg -->

79 <link name="rb_hip">

80 <visual >

81 <geometry >

82 <cylinder length="0.32" radius="0.15"/>

83 </geometry >

84 <origin rpy="0 0 0" xyz="0 0 -0.21"/>

85 </visual >

86 </link>

87 <joint name="base_to_rb_hip" type="revolute">

88 <parent link="base_link"/>

89 <child link="rb_hip"/>

90 <axis xyz="1 0 0" />

91 <origin rpy=" -1.5707 0 0" xyz="0.83 1.18 -0.455"/>

92 <limit effort="50" velocity="10" lower="0" upper="2.141" />

93 </joint >

94

95 <link name="rb_thigh">

96 <visual >

97 <geometry >

98 <cylinder length="0.64" radius="0.15"/>

99 </geometry >

100 <origin rpy="0 0 0" xyz="0 0 -0.37"/>

101 </visual >

102 </link>

103 <joint name="rb_hip_to_thigh" type="revolute">

104 <parent link="rb_hip"/>

105 <child link="rb_thigh"/>

106 <axis xyz="0 1 0" />

107 <origin rpy="0 -1.5707 0" xyz="0 0 -0.42"/>

108 <limit effort="50" velocity="10" lower="0" upper="3.141" />

109 </joint >

110

111 <link name="rb_shin">

112 <visual >

113 <geometry >
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114 <cylinder length="0.64" radius="0.15"/>

115 </geometry >

116 <origin rpy="0 0 0" xyz="0 0 -0.37"/>

117 </visual >

118 </link>

119 <joint name="rb_thigh_to_shin" type="revolute">

120 <parent link="rb_thigh"/>

121 <child link="rb_shin"/>

122 <axis xyz="0 1 0" />

123 <origin rpy="0 0 0" xyz="0 0 -0.74"/>

124 <limit effort="50" velocity="10" lower="0" upper="3.141" />

125 </joint >

126

127 <link name="rb_foot">

128 <visual >

129 <geometry >

130 <sphere radius="0.15"/>

131 </geometry >

132 <origin rpy="0 0 0" xyz="0 0 0"/>

133 </visual >

134 </link>

135 <joint name="rb_shin_to_foot" type="fixed">

136 <parent link="rb_shin"/>

137 <child link="rb_foot"/>

138 <axis xyz="0 1 0" />

139 <origin rpy="0 0 0" xyz="0 0 -0.74"/>

140 </joint >

141

142 <!--Left Front Leg -->

143 <link name="lf_hip">

144 <visual >

145 <geometry >

146 <cylinder length="0.32" radius="0.15"/>

147 </geometry >

148 <origin rpy="0 0 0" xyz="0 0 -0.21"/>

149 </visual >

150 </link>

151 <joint name="base_to_lf_hip" type="revolute">

152 <parent link="base_link"/>
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153 <child link="lf_hip"/>

154 <axis xyz="1 0 0" />

155 <origin rpy=" -1.5707 0 0" xyz="0.83 -1.18 -0.455"/>

156 <limit effort="50" velocity="10" lower="0" upper="2.141" />

157 </joint >

158

159 <link name="lf_thigh">

160 <visual >

161 <geometry >

162 <cylinder length="0.64" radius="0.15"/>

163 </geometry >

164 <origin rpy="0 0 0" xyz="0 0 -0.37"/>

165 </visual >

166 </link>

167 <joint name="lf_hip_to_thigh" type="revolute">

168 <parent link="lf_hip"/>

169 <child link="lf_thigh"/>

170 <axis xyz="0 1 0" />

171 <origin rpy="0 -1.5707 0" xyz="0 0 -0.42"/>

172 <limit effort="50" velocity="10" lower="0" upper="3.141" />

173 </joint >

174

175 <link name="lf_shin">

176 <visual >

177 <geometry >

178 <cylinder length="0.64" radius="0.15"/>

179 </geometry >

180 <origin rpy="0 0 0" xyz="0 0 -0.37"/>

181 </visual >

182 </link>

183 <joint name="lf_thigh_to_shin" type="revolute">

184 <parent link="lf_thigh"/>

185 <child link="lf_shin"/>

186 <axis xyz="0 1 0" />

187 <origin rpy="0 0 0" xyz="0 0 -0.74"/>

188 <limit effort="50" velocity="10" lower="0" upper="3.141" />

189 </joint >

190

191 <link name="lf_foot">
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192 <visual >

193 <geometry >

194 <sphere radius="0.15"/>

195 </geometry >

196 <origin rpy="0 0 0" xyz="0 0 0"/>

197 </visual >

198 </link>

199 <joint name="lf_shin_to_foot" type="fixed">

200 <parent link="lf_shin"/>

201 <child link="lf_foot"/>

202 <axis xyz="0 1 0" />

203 <origin rpy="0 0 0" xyz="0 0 -0.74"/>

204 </joint >

205 <!--Left Back Leg -->

206

207 <link name="lb_hip">

208 <visual >

209 <geometry >

210 <cylinder length="0.32" radius="0.15"/>

211 </geometry >

212 <origin rpy="0 0 0" xyz="0 0 -0.21"/>

213 </visual >

214 </link>

215 <joint name="base_to_lb_hip" type="revolute">

216 <parent link="base_link"/>

217 <child link="lb_hip"/>

218 <axis xyz="1 0 0" />

219 <origin rpy=" -1.5707 0 0" xyz=" -0.83 -1.18 -0.455"/>

220 <limit effort="50" velocity="10" lower="0" upper="2.141" />

221 </joint >

222

223 <link name="lb_thigh">

224 <visual >

225 <geometry >

226 <cylinder length="0.64" radius="0.15"/>

227 </geometry >

228 <origin rpy="0 0 0" xyz="0 0 -0.37"/>

229 </visual >

230 </link>
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231 <joint name="lb_hip_to_thigh" type="revolute">

232 <parent link="lb_hip"/>

233 <child link="lb_thigh"/>

234 <axis xyz="0 1 0" />

235 <origin rpy="0 -1.5707 0" xyz="0 0 -0.42"/>

236 <limit effort="50" velocity="10" lower="0" upper="3.141" />

237 </joint >

238

239 <link name="lb_shin">

240 <visual >

241 <geometry >

242 <cylinder length="0.64" radius="0.15"/>

243 </geometry >

244 <origin rpy="0 0 0" xyz="0 0 -0.37"/>

245 </visual >

246 </link>

247 <joint name="lb_thigh_to_shin" type="revolute">

248 <parent link="lb_thigh"/>

249 <child link="lb_shin"/>

250 <axis xyz="0 1 0" />

251 <origin rpy="0 0 0" xyz="0 0 -0.74"/>

252 <limit effort="50" velocity="10" lower="0" upper="3.141" />

253 </joint >

254

255 <link name="lb_foot">

256 <visual >

257 <geometry >

258 <sphere radius="0.15"/>

259 </geometry >

260 <origin rpy="0 0 0" xyz="0 0 0"/>

261 </visual >

262 </link>

263 <joint name="lb_shin_to_foot" type="fixed">

264 <parent link="lb_shin"/>

265 <child link="lb_foot"/>

266 <axis xyz="0 1 0" />

267 <origin rpy="0 0 0" xyz="0 0 -0.74"/>

268 </joint >

269 </robot >
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10.6 IMU node python code
1 #!/usr/bin/env python

2 import rospy , math

3 from geometry_msgs.msg import Quaternion

4 from L3GD20 import L3GD20

5 import time

6

7

8

9 def talker ():

10 # Communication object.

11 s = L3GD20(busId = 1, slaveAddr = 0x69 , ifLog = False ,

ifWriteBlock=False)

12

13

14 # Preconfiguration

15 s.Set_PowerMode("Normal")

16 s.Set_FullScale_Value("250dps")

17 s.Set_AxisX_Enabled(True)

18 s.Set_AxisY_Enabled(True)

19 s.Set_AxisZ_Enabled(True)

20

21 # Print current configuration.

22 s.Init()

23 s.Calibrate ()

24

25 # Calculation values.

26 dt = 0.1

27 x1 = 0

28 y1= 0

29 z1 = 0

30 w1 = 1

31

32 # Start ROS node.

33 pub = rospy.Publisher(’IMU’, Quaternion , queue_size =1)

34 rospy.init_node(’IMU’, anonymous=False)

35 rate = rospy.Rate (10) # 10hz

36

37 # Position Calculation
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38 while not rospy.is_shutdown ():

39 dxyz = s.Get_CalOut_Value ()

40 x1 += dxyz [0]*dt;

41 y1 += dxyz [1]*dt;

42 z1 += dxyz [2]*dt;

43 w1 = 1

44 q = Quaternion(x=math.radians(x1),y=math.radians(y1),z=

math.radians(z1),w=1)

45 # Send data through ROS.

46 rospy.loginfo(q)

47 pub.publish(q)

48 rate.sleep ()

49

50 if __name__ == ’__main__ ’:

51 try:

52 talker ()

53 except rospy.ROSInterruptException:

54 pass

10.7 Servo node python code
1 #!/usr/bin/env python

2 import rospy , ServoLib

3 from sensor_msgs.msg import JointState

4

5 # Start communication with sero controller.

6 servo = ServoLib

7 servo.setup()

8

9

10 def callback(msg):

11 # Set servo poistions.

12 joint = msg.position

13 servo.setDirectionRad (0,joint [0] ,0)

14 servo.setDirectionRad (1,joint [1] ,1)

15 servo.setDirectionRad (2,joint [2] ,0)

16

17 servo.setDirectionRad (4,joint [3] ,0)

18 servo.setDirectionRad (5,joint [4] ,0)

19 servo.setDirectionRad (6,joint [5] ,1)
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20

21 servo.setDirectionRad (8,joint [6] ,0)

22 servo.setDirectionRad (9,joint [7] ,0)

23 servo.setDirectionRad (10, joint [8] ,1)

24

25 servo.setDirectionRad (12, joint [9] ,0)

26 servo.setDirectionRad (13, joint [10] ,0)

27 servo.setDirectionRad (14, joint [11] ,1)

28

29 def listener ():

30

31 # Start ROS node.

32 rospy.init_node(’Servo’, anonymous=False)

33 # Listen for messages on joint channel.

34 rospy.Subscriber("joint", JointState , callback)

35 #Keeps python from exiting until this node is stopped.

36 rospy.spin()

37

38 if __name__ == ’__main__ ’:

39 print (’start ’)

40 listener ()

10.8 IK node python code
1 #!/usr/bin/env python

2

3 import rospy

4 from ikpy.chain import Chain

5 from ikpy.link import OriginLink , URDFLink

6

7 from std_msgs.msg import Int32 , Header

8 from sensor_msgs.msg import JointState

9 from geometry_msgs.msg import Pose , Polygon , Point32

10 global joint , rf_pos , rb_pos , lf_pos , lb_pos

11

12

13 point = Point32 ()

14 point.x = 0

15 point.y = 0

16 point.z = -1.6
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17 points = Polygon ()

18

19 for i in range (4):

20 points.points.append(point)

21

22 rf_pos = points.points [0]

23 rb_pos = points.points [1]

24 lf_pos = points.points [2]

25 lb_pos = points.points [3]

26

27 joint = JointState ()

28 h = Header ()

29

30

31 chain = Chain(name=’leg’, links =[

32 OriginLink (),

33 URDFLink(

34 name="hip",

35 translation_vector =[0, 0, 0],

36 orientation =[1.57 , 0, 0],

37 rotation =[1, 0, 0],

38 bounds =[1.57 ,3.141]

39 ),

40 URDFLink(

41 name="thigh",

42 translation_vector =[0, 0, 0.42],

43 orientation =[0, 0, 0],

44 rotation =[0, 1, 0],

45 bounds =[0 ,3.141]

46 ),

47 URDFLink(

48 name="shin",

49 translation_vector =[ -0.745 , 0, 0],

50 orientation =[0, 0, 0],

51 rotation =[0, 1, 0],

52 bounds =[0 ,3.141]

53 ),

54 URDFLink(

55 name="foot",
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56 translation_vector =[ -0.745 , 0, 0],

57 orientation =[0, 0, 0],

58 rotation =[1, 1, 1],

59 )

60 ])

61

62 def callback(msg):

63 global rf_pos , rb_pos , lf_pos , lb_pos

64 rf_pos=msg.points [0]

65 rb_pos=msg.points [1]

66 lf_pos=msg.points [2]

67 lb_pos=msg.points [3]

68 #print (msg)

69

70 def ik(x,y,z):

71 ik=chain.inverse_kinematics ([

72 [1, 0, 0, x],

73 [0, 1, 0, y],

74 [0, 0, 1, z],

75 [0, 0, 0, 1]

76 ],max_iter =5)

77

78 return(ik)

79

80 if __name__ ==’__main__ ’:

81 rospy.init_node(’ik_node ’)

82 sub=rospy.Subscriber(’ik’, Polygon , callback)

83 pub=rospy.Publisher(’joint’, JointState , queue_size =5)

84

85

86 rate=rospy.Rate (30)

87 while not rospy.is_shutdown ():

88 rf_ik = ik(rf_pos.x,rf_pos.y,rf_pos.z)

89 rb_ik = ik(rb_pos.x,rb_pos.y,rb_pos.z)

90 lf_ik = rf_ik#ik(lf_pos.x,lf_pos.y,lf_pos.z)

91 lb_ik = rb_ik#ik(lb_pos.x,lb_pos.y,lb_pos.z)

92

93 h.stamp = rospy.Time.now()

94 joint.header = h
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95 joint.name = [’base_to_rf_hip ’, ’rf_hip_to_thigh ’, ’

rf_thigh_to_shin ’, ’base_to_rb_hip ’, ’rb_hip_to_thigh ’,’

rb_thigh_to_shin ’, ’base_to_lf_hip ’, ’lf_hip_to_thigh ’, ’

lf_thigh_to_shin ’, ’base_to_lb_hip ’,’lb_hip_to_thigh ’, ’

lb_thigh_to_shin ’]

96 joint.position = [rf_ik[1], rf_ik [2],rf_ik[3],

97 rb_ik[1], rb_ik [2],rb_ik[3],

98 lf_ik[1], lf_ik [2],lf_ik[3],

99 lb_ik[1], lb_ik [2],lb_ik [3],]

100 pub.publish(joint)

101 rf_old = rf_ik

102 rb_old = rb_ik

103 lf_old = lf_ik

104 lb_old = rb_ik

105

106 rate.sleep ()

10.9 Gait Control node python code
1 #!/usr/bin/env python

2 import rospy , math , PID # ROS python , PID and Maths Library.

3 from geometry_msgs.msg import Polygon , Point32 , Pose , Quaternion #

ROS messages.

4 from Tkinter import * # GUI Library.

5

6 # After data from IMU the IMU node arrives update the IMU offset.

7 def callback(msg):

8 global imu_off

9 imu_off = msg

10

11 # main loop

12 def talker ():

13 # Initialise IMU variables.

14 global imu_off

15 imu_tf = [0,0,0,0]

16 imu_off = Quaternion ()

17

18 #Initialise GUI.

19 top = Tk()

20 #Speed of movment.
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21 spdW = Scale(top ,from_=5, to=100, label=’Speed ’)

22 spdW.pack()

23 #Vertial Leg travel.

24 zW = Scale(top ,from_=0, to=1, resolution =0.01 , label=’Z offset ’,

orient=HORIZONTAL)

25 zW.pack()

26 #Horizontal Leg travel.

27 xW = Scale(top ,from_=0, to=1, resolution =0.01 , label=’x offset ’,

orient=HORIZONTAL)

28 xW.pack()

29 # Vertial Body offset

30 stW = Scale(top ,from_=-1, to=-2, resolution =0.01 , label=’Start

offset ’, orient=HORIZONTAL)

31 stW.pack()

32 #IMU P gain.

33 imuP = Scale(top ,from_=0, to=1, resolution =0.01 , label=’IMU P

Gain’, orient=HORIZONTAL)

34 imuP.pack()

35 #IMU I gain.

36 imuI = Scale(top ,from_=0, to=1, resolution =0.01 , label=’IMU I

gain’, orient=HORIZONTAL)

37 imuI.pack()

38 #IMU D gain.

39 imuD = Scale(top ,from_=0, to=1, resolution =0.01 , label=’IMU D

gain’, orient=HORIZONTAL)

40 imuD.pack()

41

42

43 # Connect to ROS IMU and IK node.

44 sub=rospy.Subscriber(’IMU’, Quaternion , callback)

45 pub = rospy.Publisher(’ik’,Polygon , queue_size =1)

46 rospy.init_node(’Planner ’, anonymous=False)

47

48

49 # Timing variables

50 rate = rospy.Rate (30) # ROS refresh rate in Hz.

51 tik = 0 # counter 1

52 t_run =30 # counter end

53 tik2 = t_run/2 # counter 2, starts 180 degrees out of phase. .
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54

55 # Set Default GUI values

56 spdW.set (10)

57 zW.set(0)

58 xW.set(0)

59 stW.set (-1.5)

60 imuW.set (0.3)

61

62 #Set up PID controller

63 pidx = PID.PID(inP , inI , inD)

64 pidx.SetPoint = 0

65 pidx.setSampleTime (1)

66

67 pidy = PID.PID(inP , inI , inD)

68 pidy.SetPoint = 0

69 pidy.setSampleTime (1)

70

71 # ROS loop

72 while not rospy.is_shutdown ():

73 # Update GUI.

74 top.update_idletasks ()

75 top.update ()

76 # Grab Values from GUI.

77 t_run =spdW.get()

78 swingX = xW.get()

79 swingZ = zW.get()

80 start_h = stW.get()

81 inp = imuP.get()

82 ini = imuI.get()

83 ind = imuD.get()

84 # Calculate foot positions

85 # Right front foot.

86 rf_x = (swingX* (math.sin(math.radians(tik *360/ t_run)-math.

radians (90))))

87 if tik <= t_run /2:

88 rf_z = start_h + (swingZ * (math.sin((math.radians(tik *360/

t_run))))) +imu_tf [0]

89 else:

90 rf_z = start_h +imu_tf [0]
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91 # Right back foot.

92 rb_x = (swingX* (math.sin(math.radians(tik2 *360/ t_run)-math.

radians (90))))

93 if tik2 <= t_run /2:

94 rb_z = start_h + (swingZ * (math.sin((math.radians(tik2 *360/

t_run))))) +imu_tf [1]

95 else:

96 rb_z = start_h +imu_tf [1]

97 # Left front foot.

98 lf_x = (swingX* (math.sin(math.radians(tik *360/ t_run)-math.

radians (90))))

99 if tik <= t_run /2:

100 lf_z = start_h + (swingZ * (math.sin((math.radians(tik *360/

t_run))))) +imu_tf [2]

101 else:

102 lf_xz = start_h +imu_tf [2]

103 # Left back foot.

104 lb_x = (swingX* (math.sin(math.radians(tik2 *360/ t_run)-math.

radians (90))))

105 if tik2 <= t_run /2:

106 lb_z = start_h + (swingZ * (math.sin((math.radians(tik2 *360/

t_run))))) +imu_tf [3]

107 else:

108 lb_z = start_h +imu_tf [3]

109

110

111 # Create and Send ROS message of foot positions.

112 p = Polygon ()

113 p.points = [Point32(x=rf_x ,y=0,z=rf_z),

114 Point32(x=rb_x ,y=0,z=rb_z),

115 Point32(x=lf_x ,y=0,z=lf_z),

116 Point32(x=lb_x ,y=0,z=lb_z),]

117 pub.publish(p)

118

119

120

121

122

123 # Apply IMU gains from GUI values.
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124 pidx.update(imu_off.x)

125 pidy.update(imu_off.y)

126

127 imu_tf= [ (pidx.output + pidy.output),

128 (pidx.output - pidy.output),

129 (-pidx.output - pidy.output)]

130 (-pidx.output + pidy.output),

131

132

133 # Loop counter tik and tik2 , tik2 is 180 degrees out of phase.

134 if tik < t_run:

135 tik += 1

136 else:

137 tik = 0

138 tik2 = tik + t_run /2

139

140 if tik2 < t_run:

141 tik2 += 1

142 else:

143 tik2 -= t_run

144

145 rate.sleep ()

146

147 if __name__ == ’__main__ ’:

148 try:

149 talker ()

150 except rospy.ROSInterruptException:

151 pass

10.10 Launch file
1 <?xml version="1.0" encoding="UTF -8"?>

2 <launch >

3 <!--Start Robot Software -->

4 <!--Starting arguments and parameters.-->

5 <arg name="model" default="/home/jerome/catkin_ws/src/

rosberry_pup/urdf/ROSberryPup2.urdf" />

6 <arg name="gui" default="false" />

7 <arg name="joint" default="[joint]" />

8 <arg name="rvizconfig" default="/home/jerome/catkin_ws/src/
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rosberry_pup/urdf.rviz"/>

9 <param name="robot_description" command="$(find xacro)/xacro.py

$(arg model)" />

10 <param name="use_gui" value="$(arg gui)"/>

11 <param name="rate" value="50" />

12

13 <!--Start nodes.-->

14 <node name="joint_state_publisher" pkg="joint_state_publisher"

type="joint_state_publisher" >

15 <rosparam param="source_list" >["joint"]</rosparam >

16 </node >

17 <node name="robot_state_publisher" pkg="robot_state_publisher"

type="state_publisher" />

18 <node name="rviz" pkg="rviz" type="rviz" args="-d $(arg

rvizconfig)" required="false" />

19 <node name="ikpup" pkg="rosberry_pup" type="ikpup.py" />

20 <node name="Planner" pkg="rosberry_pup" type="Planner.py" />

21 </launch >
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11 Project Planning

11.1 Parts List

Part Name Cost

LDX-218 lobot, robotic servos x 12 na
Adafuit Absolute orientation IMU (BN0055) 5
Raspberry Pi 3B na
16 channel servo controller (PCA9685) 2
Ubuntu laptop na
Shock absorber (VGEY1) x4 10
Hall effects sensor x4 5
Neodynium magnets x4 5
M3 screws and spacers 5
5mm acrylic sheets x3 8
Adafuit 16-bit ADC (ADS1115) 15
ABS/PLA 3D printing filamnt 15
Total cost 70
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11.2 Gantt Chart

Table 5: Gnatt Chart

weeks

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Reseach quadrupedal design x x
0 0

Research quadrupedal motion x x
0 0

Reseach quadrupedal motion x x
0 0

Robot Specification x
0

CAD design x x
0 0

Construction of robot x x
0 0

Configure ROS on master and slave x
0

Implement invese kinematics x x
0 0

Configure Sensors x
0 0

Create gait functions x x
0 0

Implement control algorithm x x
0 0

Tune control algorithm x x
0 0
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11.3 Work Breakdown Structure

Table 6: Work breakdown structure

complete: **
partialy complete: *

Quadrupedal Robotic Platform For
Research on Legged Motion Planning.

Research Design and
Contruction

Control System

**Research
quadrupedal
design

**Research
quadrupedal
motion

**Reseach
quadrupedal
control systems

**Robot Spe-
cification

**CAD design

**Contruction
of robot

**Configure
ROS on master
and slave

**Implement
Inverse kin-
ematics func-
tions

**Configure
sensors

**Create gait
functions

**Implement
control al-
gorthm

**Tune control
algorthm
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